Analyzing identifiability of sparse linear networks GdR ISIS - Theory of deep learning

Léon Zheng, Rémi Gribonval, Elisa Riccietti

Inria DANTE / ENS de Lyon (LIP)

June 28, 2021

Sparse (linear) neural networks

- Reduce time + space complexity
- Toward interpretable NN?
\rightarrow requires identifiability / stability

Sparse (linear) neural networks

- Reduce time + space complexity
- Toward interpretable NN?
\rightarrow requires identifiability / stability

Analogy with NMF

Identifiability ensures that solution to NMF can be interpreted as the physical ground-truth.

Example: blind hyperspectral unmixing.

Figure: from [Gillis 2020]

Well-posedness in sparse matrix factorization?

Given a matrix Z, and $L \geq 2$, solve

$$
\begin{aligned}
& \min _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{L}}}\left\|\boldsymbol{Z}-\boldsymbol{X}_{\mathbf{L}} \boldsymbol{X}_{\boldsymbol{L}-\mathbf{1}} \ldots \boldsymbol{X}_{\mathbf{1}}\right\| \\
& \text { such that } \quad \boldsymbol{X}_{\ell} \text { is sparse, } \quad \forall \ell \in\{1, \ldots, L\},
\end{aligned}
$$

by exploring a given family of supports, with proximal algorithm [Le Magoarou and Gribonval 2016].

Well-posedness in sparse matrix factorization?

Given a matrix \boldsymbol{Z}, and $L \geq 2$, solve

$$
\begin{aligned}
& \min _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{L}}}\left\|\boldsymbol{Z}-\boldsymbol{X}_{\mathbf{L}} \boldsymbol{X}_{\boldsymbol{L}-\mathbf{1}} \ldots \boldsymbol{X}_{\mathbf{1}}\right\| \\
& \text { such that } \quad \boldsymbol{X}_{\ell} \text { is sparse, } \quad \forall \ell \in\{1, \ldots, L\},
\end{aligned}
$$

by exploring a given family of supports, with proximal algorithm [Le Magoarou and Gribonval 2016].

Condition of success?

Well-posedness of the problem is the key to recovery success:

- uniqueness of the solution to recover
- stability with respect to noise

Well-posedness in sparse matrix factorization?

Given a matrix Z, and $L \geq 2$, solve

$$
\begin{aligned}
& \min _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{L}}}\left\|\boldsymbol{Z}-\boldsymbol{X}_{\mathbf{L}} \boldsymbol{X}_{\boldsymbol{L}-\mathbf{1}} \ldots \boldsymbol{X}_{\mathbf{1}}\right\| \\
& \text { such that } \quad \boldsymbol{X}_{\ell} \text { is sparse, } \quad \forall \ell \in\{1, \ldots, L\},
\end{aligned}
$$

by exploring a given family of supports, with proximal algorithm [Le Magoarou and Gribonval 2016].

Condition of success?
Well-posedness of the problem is the key to recovery success:

- uniqueness of the solution to recover
- stability with respect to noise

Focus on uniqueness in exact sparse matrix factorization \rightarrow identifiability

Identifiability in exact sparse matrix facotrization

Outline

(1) Analysis with two factors
(2) Multilayer case via hierarchical factorization method

Identifiability in exact sparse matrix facotrization

Outline

(1) Analysis with two factors
(2) Multilayer case via hierarchical factorization method

Given a matrix \boldsymbol{Z} and a feasible set $\Sigma^{L} \times \Sigma^{R}$ of pairs of factors, define: find, if possible, $(\boldsymbol{X}, \boldsymbol{Y}) \in \Sigma^{L} \times \Sigma^{R}$ such that $\boldsymbol{Z}=\boldsymbol{X} \boldsymbol{Y}^{T}$.

Identifiability in exact sparse matrix facotrization

Outline

(1) Analysis with two factors
(2) Multilayer case via hierarchical factorization method

Given a matrix \boldsymbol{Z} and a feasible set $\Sigma^{L} \times \Sigma^{R}$ of pairs of factors, define: find, if possible, $(\boldsymbol{X}, \boldsymbol{Y}) \in \Sigma^{L} \times \Sigma^{R}$ such that $\boldsymbol{Z}=\boldsymbol{X} \boldsymbol{Y}^{T}$.

Informal Theorem

Let \boldsymbol{Z} be a matrix, and $\Sigma^{L} \times \Sigma^{R}$ encoding sparsity on pairs of factors. If a certain condition on $\Sigma^{L} \times \Sigma^{R}$, then \boldsymbol{Z} admits a unique EMF $\boldsymbol{Z}=\boldsymbol{X} \boldsymbol{Y}^{T}$ in $\Sigma^{L} \times \Sigma^{R}$, up to scaling and permutation ambiguities.

Identifiability in exact sparse matrix facotrization

Outline

(1) Analysis with two factors
(2) Multilayer case via hierarchical factorization method

Given a matrix \boldsymbol{Z} and a feasible set $\Sigma^{L} \times \Sigma^{R}$ of pairs of factors, define: find, if possible, $(\boldsymbol{X}, \boldsymbol{Y}) \in \Sigma^{L} \times \Sigma^{R}$ such that $\boldsymbol{Z}=\boldsymbol{X} \boldsymbol{Y}^{\top}$.

Theorem

Let Z be the DFT, DCT-II or DST-II matrix of size $N=2^{L}$. Suppose that:

- Σ^{L} enforces 2-sparsity by column;
- Σ^{R} enforces $\frac{N}{2}$-sparsity by column.

Then, \boldsymbol{Z} admits a unique EMF $\boldsymbol{Z}=\boldsymbol{X} \boldsymbol{Y}^{T}$ in $\Sigma^{L} \times \Sigma^{R}$, up to scaling and permutation ambiguities.

Notation: $\Sigma_{\mathrm{col}}^{2} \times \Sigma_{\mathrm{col}}^{N / 2}$.

Matrix decomposition into sparse rank-one matrices

Matrix decomposition into sparse rank-one matrices

Given a matrix \boldsymbol{Z} and a feasible set Γ of r-tuples of rank-one matrices, define:
find, if possible, $\left(\mathcal{C}^{i}\right)_{i=1}^{r} \in \Gamma$ such that $\boldsymbol{Z}=\sum_{i=1}^{r} \mathcal{C}^{i}$.
(EMD)
\rightarrow lifting procedure [Choudhary and Mitra 2014], [Le Magoarou 2016]

Matrix decomposition into sparse rank-one matrices

Given a matrix Z and a feasible set Γ of r-tuples of rank-one matrices, define:
find, if possible, $\left(\mathcal{C}^{i}\right)_{i=1}^{r} \in \Gamma$ such that $\boldsymbol{Z}=\sum_{i=1}^{r} \mathcal{C}^{i}$.
\rightarrow lifting procedure [Choudhary and Mitra 2014], [Le Magoarou 2016]

Proposition

When $(\boldsymbol{X}, \boldsymbol{Y})$ is non-degenerate, identifiability of $(\boldsymbol{X}, \boldsymbol{Y})$ for the EMF of $\boldsymbol{Z}:=\boldsymbol{X} \boldsymbol{Y}^{\top}$ in $\Sigma^{L} \times \Sigma^{R}$ is equivalent to identifiability of $\varphi(\boldsymbol{X}, \boldsymbol{Y})$ for the EMD of \boldsymbol{Z} in Γ.

In the case of $\Sigma_{\text {col }}^{2} \times \Sigma_{\text {col }}^{N / 2}$:

$$
\Gamma^{2, N / 2}:=\left\{\left(\mathcal{C}^{i}\right)_{i=1}^{r} \mid \mathcal{C}^{i} \text { has } 2 \text { nonzero rows, } \frac{N}{2} \text { nonzero columns }\right\} .
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
? & ? & 0 & 0 \\
? & ? & 0 & 0 \\
? & ? & 0 & 0
\end{array}\right)+\left(\begin{array}{c|ccc}
0 & \begin{array}{cc}
? & ? \\
0 & 0 \\
0 & ? \\
0 & ? \\
0 & ? \\
? & 0
\end{array} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & ? & ? \\
0 & ? & ? & ?
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & ? & 0 & 0 \\
2 & ? & 0 & 0 \\
3 & ? & 0 & 0
\end{array}\right)+\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
0 & ? & 2 & 0 \\
0 & ? & ? & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & ? & 6 \\
0 & ? & 2 & 4
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\hline 1 & ? & 0 & 0 \\
2 & ? & 0 & 0 \\
3 & ? & 0 & 0
\end{array}\right)+\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & ? & ? & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & 3 & 6 \\
0 & ? & 2 & 4
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & ? & 0 & 0 \\
3 & ? & 0 & 0
\end{array}\right)+\left(\begin{array}{l|ll|l}
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & ? & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & 3 & 6 \\
0 & ? & 2 & 4
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 \\
3 & 3 & 0 & 0
\end{array}\right)+\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & 3 & 6 \\
0 & ? & 2 & 4
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.

$$
\left(\begin{array}{l|lll}
0 & 1 & 2 & 0 \\
\hline 1 & 2 & 2 & 0 \\
2 & 6 & 5 & 6 \\
3 & 5 & 2 & 4
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 \\
3 & 3 & 0 & 0
\end{array}\right)+\left(\begin{array}{l|ll|}
0 & 1 & 2 \\
0 & 0 \\
0 & 1 & 2 \\
0 \\
0 & 1 & 2
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
3 & 3 & 6 \\
0 & 2 & 2 & 4
\end{array}\right)
$$

Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse \boldsymbol{x} from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$):

- identifiability of the support constraint
- fixed-support identifiability

Proposition

When the rank-one supports "do not overlay too much", it is possible to complete without ambiguity missing entries from observable entries via rank-one matrix completion.
$\left(\begin{array}{l|l|l|}0 & 1 & 2 \\ 0\end{array}\right)\left(\begin{array}{llll}1 & 2 & 2 & 0 \\ 2 & 6 & 5 & 6 \\ 3 & 5 & 2 & 4\end{array}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 3 & 0 & 0\end{array}\right)+\left(\begin{array}{l|ll|}0 & 1 & 2 \\ 0 & 0 \\ 0 & 1 & 2 \\ 0 \\ 0 & 1 & 2\end{array}\right)+\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{llll}3 & 3 & 6 \\ 0 & 2 & 2 & 4\end{array}\right)$

Remark: condition verified when the rank-one supports are disjoint.

Identifying the support constraint

Proposition

Let \boldsymbol{Z} be the DFT, DCT-II or DST-II matrix. Then, for any EMD $\boldsymbol{Z}=\sum_{i=1}^{r} \mathcal{C}^{i}$ with $\mathcal{C} \in \Gamma^{2, N / 2}$, there exists σ such that: $\operatorname{supp}\left(\mathcal{C}^{i}\right) \subseteq \mathcal{S}^{\sigma(i)}$, where $\left\{\mathcal{S}^{i}\right\}_{i=1}^{r}$ are pairwise disjoint.

$$
\boldsymbol{D F} \boldsymbol{T}_{4}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

Identifying the support constraint

Proposition

Let \boldsymbol{Z} be the DFT, DCT-II or DST-II matrix. Then, for any EMD $\boldsymbol{Z}=\sum_{i=1}^{r} \mathcal{C}^{i}$ with $\mathcal{C} \in \Gamma^{2, N / 2}$, there exists σ such that: $\operatorname{supp}\left(\mathcal{C}^{i}\right) \subseteq \mathcal{S}^{\sigma(i)}$, where $\left\{\mathcal{S}^{i}\right\}_{i=1}^{r}$ are pairwise disjoint.

$$
\boldsymbol{D F} \boldsymbol{T}_{4}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

(1) If $\mathcal{C} \in \Gamma^{2, N / 2}$ is an EMD of $\boldsymbol{D F T}_{4}$, then $16=\left\|\boldsymbol{D F} \boldsymbol{T}_{4}\right\|_{0}=\left\|\sum_{i=1}^{4} \mathcal{C}^{i}\right\|_{0} \leq \sum_{i=1}^{4}\left\|\mathcal{C}^{i}\right\|_{0} \leq 16$. Necessarily, $\left\{\operatorname{supp}\left(\mathcal{C}^{i}\right)\right\}_{i=1}^{r}$ are pairwise disjoint.

Identifying the support constraint

Proposition

Let \boldsymbol{Z} be the DFT, DCT-II or DST-II matrix. Then, for any EMD $\boldsymbol{Z}=\sum_{i=1}^{r} \mathcal{C}^{i}$ with $\mathcal{C} \in \Gamma^{2, N / 2}$, there exists σ such that: $\operatorname{supp}\left(\mathcal{C}^{i}\right) \subseteq \mathcal{S}^{\sigma(i)}$, where $\left\{\mathcal{S}^{i}\right\}_{i=1}^{r}$ are pairwise disjoint.

$$
\boldsymbol{D} \boldsymbol{F} \boldsymbol{T}_{\mathbf{4}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

(1) If $\mathcal{C} \in \Gamma^{2, N / 2}$ is an EMD of $\boldsymbol{D F T}_{4}$, then $16=\left\|\boldsymbol{D F} \boldsymbol{T}_{4}\right\|_{0}=\left\|\sum_{i=1}^{4} \mathcal{C}^{i}\right\|_{0} \leq \sum_{i=1}^{4}\left\|\mathcal{C}^{i}\right\|_{0} \leq 16$. Necessarily, $\left\{\operatorname{supp}\left(\mathcal{C}^{i}\right)\right\}_{i=1}^{r}$ are pairwise disjoint.
(2) Only one possible partition $\left\{\mathcal{S}^{i}\right\}_{i=1,2,3,4}$ of $\operatorname{supp}\left(\boldsymbol{D F} \boldsymbol{T}_{4}\right)$ such that $\left(D F T_{4}\right)_{\mid \mathcal{S}^{i}}$ is of rank one.

Multilayer extension, with a butterfly sparsity structure Given a matrix \boldsymbol{Z} and a feasible set Σ of L-tuple of factors, define: find, if possible, $\left(X_{\ell}\right) \in \Sigma$ such that $\boldsymbol{Z}=\boldsymbol{X}_{\mathbf{L}} \boldsymbol{X}_{\boldsymbol{L - 1}} \ldots \boldsymbol{X}_{\mathbf{1}}$.

Multilayer extension, with a butterfly sparsity structure Given a matrix \boldsymbol{Z} and a feasible set Σ of L-tuple of factors, define:
find, if possible, $\left(\boldsymbol{X}_{\ell}\right) \in \Sigma$ such that $\boldsymbol{Z}=\boldsymbol{X}_{\boldsymbol{L}} \boldsymbol{X}_{\boldsymbol{L}-\mathbf{1}} \ldots \boldsymbol{X}_{\mathbf{1}}$.
(MEMF)
Here: $\Sigma^{\text {fly }}:=\left\{\boldsymbol{X}_{\boldsymbol{L}}, \ldots, \boldsymbol{X}_{\mathbf{1}}\right.$ have supp included in the butterfly supports $\}$.

Figure: Butterfly supports: block diagonal +2 -sparse by row and by column.

Multilayer extension, with a butterfly sparsity structure

 Given a matrix \boldsymbol{Z} and a feasible set Σ of L-tuple of factors, define:find, if possible, $\left(\boldsymbol{X}_{\ell}\right) \in \Sigma$ such that $\boldsymbol{Z}=\boldsymbol{X}_{\boldsymbol{L}} \boldsymbol{X}_{\boldsymbol{L - 1}} \ldots \boldsymbol{X}_{\mathbf{1}}$.
(MEMF)
Here: $\Sigma^{\text {fly }}:=\left\{\boldsymbol{X}_{\boldsymbol{L}}, \ldots, \boldsymbol{X}_{\mathbf{1}}\right.$ have supp included in the butterfly supports $\}$.

Figure: Butterfly supports: block diagonal +2 -sparse by row and by column.

Theorem

Let $\boldsymbol{Z}:=\boldsymbol{X}_{\mathbf{L}} \boldsymbol{X}_{\boldsymbol{L}-\mathbf{1}} \ldots \boldsymbol{X}_{\mathbf{1}}$ of size $N=2^{L}$ where $\operatorname{supp}\left(\boldsymbol{X}_{\boldsymbol{L}}\right), \ldots, \operatorname{supp}\left(\boldsymbol{X}_{\mathbf{1}}\right)$ are exactly the butterfly supports. Then, the factors $\boldsymbol{X}_{\boldsymbol{L}}, \ldots, \boldsymbol{X}_{\mathbf{1}}$ are the unique MEMF of \boldsymbol{Z} in $\Sigma^{\text {fly }}$, up to scaling ambiguities.

Application: $\boldsymbol{Z}=\mathrm{DFT}$ matrix of size $N=2^{L}$.

A hierarchical factorization method
Consider $\left(\boldsymbol{X}_{4}, \boldsymbol{X}_{3}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right) \in \Sigma^{\mathrm{fy}}$, and

$$
Z=X_{4} X_{3} X_{2} X_{1} .
$$

Lemma

For any $\left(\boldsymbol{X}_{4}^{\prime}, \boldsymbol{X}_{3}^{\prime}, \boldsymbol{X}_{2}^{\prime}, \boldsymbol{X}_{1}^{\prime}\right) \in \Sigma^{\mathrm{fy}}$, we have:

A hierarchical factorization method
Consider $\left(\boldsymbol{X}_{4}, \boldsymbol{X}_{3}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right) \in \Sigma^{\mathrm{fy}}$, and

$$
Z=X_{4} X_{3} X_{2} X_{1} .
$$

Lemma

For any $\left(\boldsymbol{X}_{4}^{\prime}, \boldsymbol{X}_{\mathbf{3}}^{\prime}, \boldsymbol{X}_{\mathbf{2}}^{\prime}, \boldsymbol{X}_{\mathbf{1}}^{\prime}\right) \in \Sigma^{\mathrm{fly}}$, we have:

A hierarchical factorization method
Consider $\left(\boldsymbol{X}_{4}, \boldsymbol{X}_{3}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right) \in \Sigma^{\mathrm{fy}}$, and

$$
Z=X_{4} X_{3} X_{2} X_{1} .
$$

Lemma

For any $\left(\boldsymbol{X}_{4}^{\prime}, \boldsymbol{X}_{\mathbf{3}}^{\prime}, \boldsymbol{X}_{\mathbf{2}}^{\prime}, \boldsymbol{X}_{\mathbf{1}}^{\prime}\right) \in \Sigma^{\mathrm{fly}}$, we have:

A hierarchical factorization method
Consider $\left(\boldsymbol{X}_{4}, \boldsymbol{X}_{3}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right) \in \Sigma^{\mathrm{fy}}$, and

$$
Z=X_{4} X_{3} X_{2} X_{1} .
$$

Lemma

For any $\left(\boldsymbol{X}_{4}^{\prime}, \boldsymbol{X}_{\mathbf{3}}^{\prime}, \boldsymbol{X}_{\mathbf{2}}^{\prime}, \boldsymbol{X}_{\mathbf{1}}^{\prime}\right) \in \Sigma^{\mathrm{fly}}$, we have:

This property of the butterfly supports is true for any number of layers, and any hierarchical tree structure.

Exact recovery of the multiple butterfly factors

Let $\boldsymbol{Z}:=\boldsymbol{X}_{\boldsymbol{L}} \boldsymbol{X}_{\boldsymbol{L}-1} \ldots \boldsymbol{X}_{\mathbf{1}}$ of size $N=2^{L}$ where $\operatorname{supp}\left(\boldsymbol{X}_{\boldsymbol{L}}\right), \ldots, \operatorname{supp}\left(\boldsymbol{X}_{\mathbf{1}}\right)$ are exactly the butterfly supports.
Algorithm Exact sparse recovery of $\boldsymbol{X}_{L}, \ldots, \boldsymbol{X}_{\mathbf{1}}$ from \boldsymbol{Z}, up to rescaling. Require: matrix Z
1: $\boldsymbol{H} \leftarrow \boldsymbol{Z}$
2: for $\ell=L, \ldots, 1$ do
3: $\quad \mathcal{S} \leftarrow \varphi\left(\boldsymbol{B}^{\ell}, \boldsymbol{W}^{\ell-1}\right)$
4: \quad for $i=1, \ldots, r$ do
5: $\quad \mathcal{C}^{i} \leftarrow \boldsymbol{H}_{\mid \mathcal{S}^{i}}$
6: end for
7: $\quad\left(\boldsymbol{X}_{\ell}^{\prime}, \boldsymbol{H}^{\top}\right) \leftarrow \varphi^{-1}(\mathcal{C})$
8: end for
$B^{\ell}=\ell$-th butterfly support

where \square is a block full of 1 s .

9: return $\boldsymbol{X}_{\boldsymbol{L}}^{\prime}, \ldots, \boldsymbol{X}_{\boldsymbol{1}}^{\prime}$
Recovery under noise: set \mathcal{C}^{i} as the best rank-one approximation of $\boldsymbol{H}_{\mid \mathcal{S}^{i}}$.

Conclusion and discussion

Take-home message
(1) Identifiability for well-posedness of sparse matrix factorization

Conclusion and discussion

Take-home message

(1) Identifiability for well-posedness of sparse matrix factorization
(2) Analysis of identifiability in multilinear inverse problems relies on the lifting approach

Conclusion and discussion

Take-home message
(1) Identifiability for well-posedness of sparse matrix factorization
(2) Analysis of identifiability in multilinear inverse problems relies on the lifting approach
(3) Extension to the multilayer case via a hierarchical factorization method

Conclusion and discussion

Take-home message
(1) Identifiability for well-posedness of sparse matrix factorization
(2) Analysis of identifiability in multilinear inverse problems relies on the lifting approach
(3) Extension to the multilayer case via a hierarchical factorization method

Future work

- Tighter conditions for fixed-support identifiability, to better understand identifiability of the support constraint.
- Identifiability in the multilayer case constrained by a family of sparsity patterns.

References

Phoudhary, Sunav and Urbashi Mitra (2014). "Identifiability scaling laws in bilinear inverse problems". In: arXiv preprint arXiv:1402.2637.
Gillis, Nicolas (2020). Nonnegative Matrix Factorization. SIAM.
圊 Le Magoarou, Luc (2016). "Matrices efficientes pour le traitement du signal et l'apprentissage automatique". PhD thesis. INSA de Rennes.
囯 Le Magoarou, Luc and Rémi Gribonval (2016). "Flexible multilayer sparse approximations of matrices and applications". In: IEEE Journal of Selected Topics in Signal Processing 10.4, pp. 688-700.

